Cluster chemistry

LIII *. Preparation and some substitution reactions of bis(arylimido) triruthenium complexes: X-ray structures of $\mathrm{Ru}_{3}\left(\mu_{3}\right.$-NPh $)\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}-3\right)(\mathrm{CO})_{9}$ and $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}(\mathrm{~L})\left(\mathrm{L}=\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-\mathbf{2 , 6}\right.$ and $\left.\mathrm{PPh}_{3}\right)$

Michael I. Bruce, Mark G. Humphrey, Omar bin Shawkataly, Michael R. Snow and Edward R.T. Tiekink

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)
(Received May 18th, 1987)

Abstract

Azoarenes, $\mathrm{ArN}=\mathrm{NAr}^{\prime}$, react with $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ to give $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NAr}\right)\left(\mu_{3}-\right.$ $\left.\mathrm{NAr}^{\prime}\right)(\mathrm{CO})_{9}\left(\mathrm{Ar}=\mathrm{Ph}, \mathrm{Ar}^{\prime}=\mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-3, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-3(11), \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-4\right.$; $\mathrm{Ar}=\mathrm{Ar}^{\prime}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-3$) in moderate yields; for $\mathrm{Ar}=\mathrm{Ar}^{\prime}=\mathrm{Ph}$ or $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-3$, the mononuclear cyclometallated $\mathrm{Ru}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{RN}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{R}-3\right)_{2}(\mathrm{CO})_{2}(\mathrm{R}=\mathrm{H}$ or Me) were also obtained in low yield. $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ and azobenzene afford $\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}$ in very low yield. An X-ray study of 11 confirms the structural assignments made on the basis of the spectroscopic measurements: an $R u_{3}$ triangle with a non-bonded $\mathrm{Ru} \ldots \mathrm{Ru}$ vector is capped on both sides by a μ_{3}-arylimido moiety. Electron transfer-catalysed reactions with isocyanides, tertiary phosphines and phosphites proceed to give CO -substituted products in moderate yields: complexes $\mathrm{Ru}_{3}\left(\mu_{3^{-}}\right.$ $\mathrm{NPh})_{2}(\mathrm{CO})_{8}(\mathrm{~L}) \quad\left(\mathrm{L}=\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right.$ (15), PPh_{3} (16), $\left.\mathrm{P}(\mathrm{OMe})_{3}\right),\left\{\mathrm{Ru}_{3}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{NPh})_{2}(\mathrm{CO})_{8}\right\}_{2}\left(\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{C}_{2}\right)$ and $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mu-\mathrm{LL})(\mathrm{CO})_{7}(\mathrm{LL}=\mathrm{dppm}$, dppe) were obtained. X-ray structural studies of $\mathbf{1 5}$ and $\mathbf{1 6}$ show that the isocyanide ligand occupies an axial position, whereas the tertiary phosphine takes up an equatorial position, both on a terminal ruthenium atom. Crystals of 11, 15 and 16 crystallize in the monoclinic system with space group $P 2_{1} / n, a 11.496(2), b 14.020(2), c$ 15.735(2) \AA, β 99.43(1) ${ }^{\circ}, Z=4$ for 11; space group $P 2_{1} / n, a 11.933(2), b$ 18.952(2), c $14.370(4) \AA, \beta 100.29(2)^{\circ}, Z=4$ for 15 ; and space group $P c, a 17.507(3), b$ $11.657(2), c 19.518(4) \AA, \beta 100.41(2)^{\circ}, Z=4$ for 16. The structures were refined by

[^0]least-squares methods and at convergence $R=0.037, R_{w}=0.048$ for 3653 statistically significant reflections for $11 ; R=0.041, R_{w}=0.046$ for 3903 reflections for 15; and $R=0.039, R_{\text {4 }}=0.047$ for 5291 reflections for 16 .

Introduction

The first report of cluster complexes of the iron triad containing the $\mathrm{M}_{3} \mathrm{~N}_{2}$ skeletal framework was that describing the reaction between MeN and $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ [1]: the product, $\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{NMe}_{2}(\mathrm{CO})_{9}(\mathbf{1})\right.$. was fully characterised by an X-ray study in 1969 [2]. Subsequently. the reaction between $\mathrm{Fe}_{3}\left(\mathrm{CO}_{12}\right.$ and nitroethane to give the ethyl analogue of $\mathbf{1}$ was described by Aime and coworkers [3]. and Alper and Paik showed that similar complexes were formed in reactions with nitroarenes [4]. The reduction of nitroarenes to arylamines by $\mathrm{Fe}_{2}(\mathrm{CO})_{1}$: in methanol [5] and by $\mathrm{Ru}_{3}(\mathrm{CO})_{12}[6]$ had been discovered previously.

More detailed investigations of these $\mathrm{M}_{3}(\mathrm{CO})_{12}$-catalysed reactions resulted in the isolation and X -ray characterisation of the complexes $\left.\mathrm{Ru} \mathrm{o}_{\boldsymbol{\prime}} \mu_{;} \mathrm{NPh}\right)\left(\mu_{;}-\right.$ $\mathrm{CO})(\mathrm{CO})_{9}(2)[7]$ and $\mathrm{M}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(\mathrm{M}=\mathrm{Fe}$ (3) [8]. $\mathrm{M}=\mathrm{Ru}$ (4) [9]). CO exchange in $\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{NR}\right)_{2}(\mathrm{CO})_{0}[10]$ and studies of their dynamic properties by ${ }^{\circ} \mathrm{C}$ NMR have been reported [11], while more recently, the synthesis of formyl, acyl and carbene derivatives in the iron system, and interesting carbene-nitrene and CO-al-kyne-nitrene coupling reactions have been elucidated [12]. Similar complexes, have been isolated from reactions of $\mathrm{M}_{3}(\mathrm{CO})_{12}$ with azides [13] or nitroso compounds [14]. while their reactions with hydrogen have given $\mathrm{Ru}_{3}(\mu-\mathrm{H}),\left(\mu_{3}-\mathrm{NAr}\right)_{2}(\mathrm{CO})_{8}(5)$. which has been shown to be an efficient olefin hydrogenation catalyst [15].

After the reactivity of unsaturated organic compounds containing olefinic or acetylenic centres towards metal carbonyls had been established. a natural extension was to compounds containing $\mathrm{CH}=\mathrm{N}$ and $\mathrm{N}=\mathrm{N}$ groups. The first results of these studies appeared in 1965 . when it was reported inter alia that reactions between azobenzene and iron carbonyls afforded the binuclear compleves. $\mathrm{Fe}_{2}(\mu-$ $\left.\mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{NPh}\right)(\mathrm{CO})_{6}(6)$ [16]. The 0 -semidine-derived structure was confirmed by an X -ray study [17]. In the full account, the reaction between azotoluene and $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ was also described as producing a trinuclear complex aseribed the structure $\mathrm{Fe}_{2}\left(\mu_{3}\right.$ $\left.\mathrm{NHC}_{6} \mathrm{H}_{3} \mathrm{MeNC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\left(\mathrm{CO}_{4}\right.$ (7) on the basis of similarities in the spectral properties of complexes 6 and 7[18]. Reactions between azobenzene and $\left.\mathrm{Ru}_{3}, \mathrm{CO}\right)_{12}$ were examined several years later, and the major product was a trinuclear complex. which was assigned a structure related to that of 7 , again on the basis of smiarities in their spectra [19].

The properties of the $\mathrm{M}_{3} \mathrm{~N}_{2}$ complexes resemble those of the supposed semidine derivative (7), and we have reinvestigated some of this chemistry. We have confirmed that the trinuclear complexes have the trinuclear bistarylimido) cluster structure, both spectroscopically and by an X-ray structure of the product obtained from $\mathrm{PhN}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}-3$. Also described herein are some CO -substitution reactions of these complexes, together with the structures of the isocyanide and $\mathrm{PPh}_{\text {, complexes: }}$ some of this work has been described in a preliminary communication, together with the structure of $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}$ [20]. The synthesis of similar complexes from $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)\left(\mu_{3}-\mathrm{CO}\right)(\mathrm{CO})_{9}$ and azoarenes. and the reaction of complexes $\mathbf{4}$ with H_{2} to give the olefin-hydrogenation catalysts $\mathrm{Ru}:(\mu, \mathrm{NAr})$, μ $\mathrm{HI}_{2}(\mathrm{CO})_{8}(5)$, have been described recently [15].

Results

We have found that the reactions of azoarenes with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ or $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ proceed as originally described, but that the trinuclear complexes so formed have the $\mathrm{M}_{3} \mathrm{~N}_{2}$ skeleton, a formal cleavage of the $\mathrm{N}=\mathrm{N}$ double bond in the azoarene occurring. Thus, the purple trinuclear complex $\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}$ (3) was obtained in very low yield from the reaction between $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ and azobenzene in refluxing benzene. Similarly, $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ afforded orange $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}$ (5) in 20% yield, accompanied by a smaller amount of the mononuclear cyclometallated complex $\mathrm{Ru}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)_{2}(\mathrm{CO})_{2}(8)$, and a dark brown solid which has not yet been identified. A slightly higher yield of 5 was obtained by carrying out the reaction under CO . Analogous trinuclear complexes were obtained from the reactions of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{RN}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}$; only the mixed complexes $\mathrm{Ru}_{3^{-}}$ $\left(\mu_{3}-\mathrm{NR}\right)\left(\mu_{3}-\mathrm{NR}^{\prime}\right)(\mathrm{CO})_{9}\left(\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=3-\mathrm{Me}(9), \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=3-\mathrm{CF}_{3}(10), \mathrm{R}=\mathrm{H}\right.$, $\mathrm{R}^{\prime}=3-\mathrm{F}(\mathbf{1 1}), \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=4-\mathrm{F}(\mathbf{1 2)})$ were obtained from the asymmetric azobenzenes, no evidence for the formation of the homo-bis-arylimido complexes being obtained. In the case of azotoluene, both $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-3\right)_{2}(\mathrm{CO})_{9}(13)$ and the dimethyl analogue of $8, \overline{\mathrm{Ru}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{MeN}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)_{2}(\mathrm{CO})_{2}(14) \text {, were isolated. }}$

The identities of these complexes were established by elemental microanalyses, comparison of their IR $\nu(\mathrm{CO})$ spectra with the literature values (for 3 and 4), and from the unit cells of $\mathbf{3}$ and $\mathbf{4}$, which were identical (within experimental error) with those reported in the literature. The similarities in the physical properties of the other trinuclear complexes suggested that they also contained the $\mathrm{Ru}_{3} \mathrm{~N}_{2}$ skeleton,

(1) $R-M e$
(3) $R=P h$

(5) $\mathrm{Ar}=\mathrm{Ph}$

(2)

	R	R^{\prime}
(4)	Ph	Ph
(9)	Ph	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-3$
(10)	Ph	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CF}_{3}-3$
(11)	Ph	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-3$
(12)	Ph	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-4$
(13)	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me-3}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-3$

(6)

(7)

$$
\begin{aligned}
& 19 \\
& 20:=2
\end{aligned}
$$

$$
\text { (8) } R=H
$$

	4	L^{\prime}
(15)	CNxy	\bigcirc
(16)	5	Pprs
$17!$	C)	Picme)s
18	O	\therefore idppa)

(18) (i) 18 apa)
and this was confirmed by an X-ray study of the 3-fluorophenyl complex 11 (see below). For 13, the single methyl resonance found in the ${ }^{1}$ H NMR spectrum showed the two methyl groups were in identical environments. The ${ }^{\text {" }} \mathrm{C}$ NMR spectra of 3 and 4 were virtually identical, containing only three absorptions between $\delta 123130$ ppm, showing that both phenyl groups are chemically equivalent, and turthermore, were not consistent with the osemidine-derived structures proposed earlier

The fast atom bombardment (FAB) mass spectrum of 4 contains ions $[M-n \mathrm{CO}]$ $(n=0-9)$. together with a series of weak ions corresponding to $\left[\mathrm{Ru}:\left(\mathrm{CO}_{n}\right]\right.$ ($n=7-12$) or more likely. $\left[\mathrm{Ru}_{3} \mathrm{~N}_{2}\left(\mathrm{CO}_{n}\right]^{-1}(n=6-11)\right.$. formed by loss of the phenyl groups and intermolecular transfer of CO ligands.

The mononuclear complex 8 contained two $r(C O)$ bands in its $I R$ spectrum. while the ${ }^{1} H$ NMR spectrum showed the characteristic multiplets associated with an ortho-metallated phenylazophenyl group. The compound was fully characlerised by a single-crystal X-ray study, which showed that the CO groups were trons to the carbon of one, and the nitrogen of the second. cyclometallated ligand [21]. This structure is identical with that found for the osmium analogue obtained from similar reactions between $\mathrm{O}_{3}(\mathrm{CO})_{12}$ and azobenzene [22]. As has been found before, there are few differences in the bond parameters between the two complexes. It is interesting to note that these two complexes and also $\mathrm{Ru}_{4}\left(\mathrm{RC}_{2} \mathrm{H}_{2} \mathrm{O}\right) \mathrm{P}$ $\left.\left(\mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{R}-4\right)_{2}\right\}_{2}(\mathrm{~L})_{2}\left(\mathrm{R}=\mathrm{H} . \mathrm{L}=\mathrm{P}(\mathrm{OPh})_{3}[23] ; \mathrm{R}=\mathrm{Me} \mathrm{I}=\mathrm{CO}[24]\right)$ have one aryl carbon trans to the chelate donor atom. and the other trans to L. in contrast to the situation found for $\mathrm{Ru}(\mathrm{bq})_{2}(\mathrm{CO})_{2}\left(\mathrm{bq}=\operatorname{benzo}\left[h \mid q u i n o l i n-10-\mathrm{y} \cdot \mathrm{C}^{1 / 6} . \mathrm{N}\right)\right.$, in which both nitrogen atoms are trans to the CO groups [25], and the rhodium complex $\widehat{\mathrm{Rh}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right),\left(\mathrm{O}_{2} \mathrm{CMe}\right) \text {, in which the two nitrogens are mutually } . ~}$ trans. and the metallated carbons mutually ais [26]. The origins of these differences are not clear at the present time.

Mechanism of the reaction

The formation of the trinuclear bis-arylimido complexes from azoarenes requires that the $\mathrm{N}=\mathrm{N}$ double bond is cleaved at some stage of the reaction. it is likely that the first step of the transformation involves coordination of the azoarene to the cluster by the nitrogen atoms, perhaps giving an intermediate in which one of the $\mathrm{M}-\mathrm{M}$ bonds is bridged by the azoarene such as \mathbf{A} (Scheme 1). Slippage of the azoarene and further interaction with the third metal atom results in $\mathrm{N} \cdots \mathrm{N}$ bond cleavage together with electon rearrangement following capping leading to opening

$\mathrm{ArN}=\mathrm{NA} \boldsymbol{r}$

- $=\mathrm{M}(\mathrm{CO})_{3}$

(A)

Scheme 1
of the M_{3} triangle. The intermediacy of \mathbf{A} has not been established in the ruthenium system, but in an analogous reaction, $\mathrm{Os}_{3}(\mathrm{CO})_{12-x}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{x}(x=1$ or 2) reacts with dimethyl azodicarboxylate to give $\mathrm{Os}_{3}\left\{\mu_{3}-\mathrm{N}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{NC}(\mathrm{O}) \mathrm{OMe}\right\}(\mathrm{CO})_{11}$, which when heated in benzene affords $\mathrm{Os}_{3}\left\{\mu_{3}-\mathrm{N}_{2}(\mathrm{C}(\mathrm{O}) \mathrm{OMe})_{2}\right\}(\mathrm{CO})_{10}$ [27]. Stabilisation of this intermediate is aided by coordination of the ester carbonyl oxygen atoms.

The eventual cleavage of the $\mathrm{N}-\mathrm{N}$ bond is also consistent with the formation of the o-semidine derivatives such as 6 . An alternative reaction can take place when one nitrogen is coordinated to one metal atom, namely the well-known cyclometallation reaction. Interaction of the aryl $\mathrm{C}-\mathrm{H}$ bond with the cluster results in formation of an $\mathrm{Ru}-\mathrm{C}$ bond and addition of the hydrogen atom to the cluster, as found with the aryldiazo complex $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{PPhCH}_{2} \mathrm{PPh}_{2}\right)(\mu-\mathrm{N}=\mathrm{NPh})(\mathrm{CO})_{8}$ recently [28]. However, reaction with a second molcculc of azoarene affords the mononuclear complexes $\mathbf{8}$ or 14, the hydrogen being eliminated with the other two metal carbonyl fragments; ruthenium carbonyl hydrides are unstable $\left(\mathrm{RuH}_{2}(\mathrm{CO})_{4}\right)$ or unknown $\left(\mathrm{Ru}_{2} \mathrm{H}_{2}(\mathrm{CO})_{8}\right)$, and we have found that the possible cluster hydride, $\mathrm{Ru}_{4}(\mu$ $\mathrm{H})_{4}(\mathrm{CO})_{12}$, reacts readily with azobenzene to give at least nine products.

Substitution reactions

No chemistry of $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}$, apart from its hydrogenation to give $\mathrm{Ru}_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}$ [15], has been reported previously. We have found that ready substitution of CO by isocyanide or tertiary phosphine ligands occurs under electron-transfer catalysed conditions. Thus, with m-xylyl isocyanide, red-orange $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}(\mathrm{CNxy})$ (15) was isolated in 40% yield. The IR spectrum
contained a $\nu(\mathrm{CN})$ band at $2156 \mathrm{~cm}^{-1}$, together with a complex $r(\mathrm{CO}$ pattern, the number of bands suggesting the presence of isomers. However. he ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of only one environment for the Me groups. To determine the position of substitution, an X-ray study of $\mathbf{1 5}$ was undertaken, and this revealed that one of the axial $C O$ groups on an outer ruthentum atom had been replaced by the isocyanide ligand. In other respects. the simmere memble that of the parent compound.

Similar reactions between $\mathrm{Ru}:(\mathrm{CO})_{12}$ and monodentate fertary phosphines, such as PPh_{3}. or phosphites, such as $\mathrm{P}(\mathrm{OMc})_{\text {s. }}$ afforded monosubstituted complexes whose IR $\nu(C O)$ spectra differed from that of complex 15 m heving only seven bands. The postion of substitution was established as the equatorial site on one of the terminal ruthenium atoms by means of an X-ray study of the PPh somplex 16 : the similarity of the $I R \quad v(C O)$ specira suggests that the P(OMe), complex 17 has the same stereochemistry. The linear bis-tertiary phosphine (\quad (PPR,) (dppa), gave it red-orange complex with an $1 R 2(C O)$ spectrum similar to those si 16 and 17 , and with an elemental microanalysis and molecular weight ($\mathrm{FAB} M S$ sonsmant whth it, being the "binuclear $\left(\mathrm{Ru}_{3}\left(\mu, \mu_{3} \mathrm{NP}\right)_{2}(\mathrm{CO})_{8}\right\}_{2}(\mu-\mathrm{dppa})(18)$

Reactions of 4 with the bidentate tertary phosphines dppmand dppe afforded the complexes $\mathbf{1 9}$ and $\mathbf{2 0}$, respectively; the latter was obtaned in ont wery low veld. Both complexes had smilar $1 \mathrm{R} p(\mathrm{CO})$ specta and the $\mathrm{X}-\mathrm{m}$ study reported earler [20] showed that the dppm ligand spanned the non-bonded Ru... Ru vector, with the phosphorus atoms occupying the two equatorial sites. Gharacterisation of complexes 16 and 19 was aded by their mass spectra. In the electron impact (FI) mass spectrum of $\mathbf{1 6}$. the stronges ion was $\left\{\mathrm{PPh}_{3} \mid\right.$. Indicating that themat decomposition has occurred in the hot $\left(150^{\circ} \mathrm{C}\right)$ source. fons sorresponding to $[M \quad n C O]^{+}(n=0-8)$ were very weak. In contrast. the PAB mass spectum of 19 contained strong ions $[M-n C O](n=0-7)$, wgether with other fragment ions corresponding to loss of the arylimido groups.

The substitution positions are the same as found for the parat mabonyt. $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ [29]. Isocyanides occupy axial positions in $\mathrm{Ru}_{\mathrm{i}}(\mathrm{CO})_{1}(\mathrm{CNBu})$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{CNBu})_{2}[30]$, while tertiary phosphines and phosphites go imo equatorial sites. as found in many such derivatives that have heen studied. Bidentate phoshines also occupy equatorial sites on adjacent ruthenmm atoms in complexes such as $\mathrm{Ru}_{3}(\mathrm{CO})_{10}(\mathrm{dppm})[31] . \mathrm{Ru}(\mathrm{CO})_{8}(\mathrm{dppm})=[32]$ and $\mathrm{Ru}_{3}(\mathrm{CO})_{2 n}(\mathrm{dppe})[33]$.
 assumed to have a 17 e centre, which are known to be readity substitute The extra electron is accommodated in the LUMO which has metal metal antibonding character [34]. Kochi and coworkers 135] have made a detaled whty of Feaf:-
 with a range of phosphorus donor ligands, and have lound that ebosel" and "opea' radical anions, the latter fomed by "slippage of the pphyroup. are formed. The consequent weakening or cleavage of the Fe P bond generates a 17 metal centre which is substitution labile. Their sudies offer an explamation for the dppe ligand
 leling the structure of $\mathrm{Ru}_{3}\left(\mu_{3} \mathrm{NPh}\right)$, $(\mu$-dppm $)(\mathrm{CO})$ - reported carlat [20]. We consider that smilar intermediates are formed in the ETC-substution reations of the ruthenium complex.
X-ray structures of $R u_{3}\left(\mu_{3}-N A r\right)_{2}(\mathrm{CO})_{9}$ and substituted derivatives
As mentioned above, the X-ray structures of $\mathrm{M}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(\mathrm{M}=\mathrm{Fe}$ [8], Ru [9]) and of the related complexes $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)\left(\mu_{3}-\mathrm{CO}\right)(\mathrm{CO})_{9}$ [7] and $\mathrm{Ru}_{3}(\mu$ -$\mathrm{H})_{2}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}[15]$ have been reported; unit cell data for complexes $\mathbf{3}$ and $\mathbf{4}$ obtained in this work were the same as reported in the above accounts, and constitute confirmatory identification of these compounds. We have also determined the molecular structures of $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}-3\right)(\mathrm{CO})_{9}$ (11) and of the substituted complexes $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}(\mathrm{~L})\left(\mathrm{L}=\mathrm{CNxy}(15)\right.$ and $\mathrm{L}=\mathrm{PPh}_{3}$ (16)) and $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(\mathbf{1 9})$; details of the latter appeared in our preliminary communication [20]. Full details of these structural determinations are given in the Experimental section. Plots of each of the molecules 11, 15 and 16 are given in Fig. 1-3, respectively: a commentary on significant structural features (Table 2) follows.

All four complexes contain an 'open' Ru_{3} triangle capped on both sides by a μ_{3}-arylimido ligand (aryl $=\mathrm{Ph}$ except for one group, $3-\mathrm{FC}_{6} \mathrm{H}_{4}$, in 11). The $\mathrm{Ru}_{3} \mathrm{~N}_{2}$ core is thus based on a trigonal bipyramidal arrangement with the N atoms occupying axial positions. The carbonyl ligands in the complexes are basically terminal and any deviation from linearity arises either as a result of steric pressures within the complexes or significant intermolecular interactions as will be discussed below. Substitution of a carbonyl in 4 by $\mathrm{CN}\left(m\right.$-xylyl) in 15 and by PPh_{3} in 16 occurs at one of the 'end' Ru atoms rather than at the middle Ru atom.

The molecular geometry found for $\mathbf{1 1}$ (Fig. 1) is essentially the same as that found for the parent bis-imido compound 4 [9], there being no outstanding differences between comparable interatomic parameters in these molecules. The asymmetry in the $R u(1)-R u(2)$ and $R u(2)-R u(3)$ bonds (distances 2.702(1) and $2.615(1) \AA$) is similar to that reported for 4 [9] and is examined further below. The

Fig. 1. Molecular structure of $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}-3\right)(\mathrm{CO})_{9}$ (11), showing atom numbering scheme.

Fig. 2. Molecular structure of $\mathrm{Ru}:\left(\mu_{3} \cdot \mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}\left(\mathrm{CNC} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}-2,6\right)(15)$, showing atom numbering scheme.

Fig. 3. Molecular structure of $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}\left(\mathrm{CO}_{8}\left(\mathrm{PPh}_{3}\right)\right.$ (16) (molecule B), showing atom numbering scheme.
$R u(1) \ldots \mathrm{Ru}(3)$ separation of $3.291(1) \AA$ is not indicative of a bonding interaction between these atoms. Not unexpectedly the presence of the m-fluorine atom on one of the phenyl groups in $\mathbf{1 1}$ does not exert any significant influence on the overall structure. However, the crystal structure analysis does confirm the nature of the reaction product derived from the reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with asymmetric azoarenes.

In complex 15, the isocyanide ligand replaces an 'axial' CO group on a terminal ruthenium atom (Fig. 2). In these trigonal bipyramidal $\mathrm{M}_{3} \mathrm{~N}_{2}$ complexes, the six CO groups that are not approximately coplanar with the Ru_{3} core may be termed 'axial', although the $\mathrm{Ru}-\mathrm{C}-\mathrm{N}$ vector is inclined at 96.3° to the $\mathrm{Ru}{ }_{3}$ plane, with the $\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(21)$ angle $162.7(2)^{\circ}$. This may be compared with the corresponding $\mathrm{N}-\mathrm{Ru}-\mathrm{P}$ angle of approximately 109° found in 16 (see below). However, the overall structure and disposition of the ligands is remarkably similar to those found in 4 and 11. The $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ angles range between $174.6(6)$ and $179.7(3) \AA$, while the $\mathrm{Ru}(1)-\mathrm{C}(21)-\mathrm{N}(3)$ angle is $175.9(5)^{\circ}$.

In 16 one of the carbonyl groups on a terminal Ru atom of $\mathbf{4}$ has been substituted for a PPh_{3} ligand (Fig. 3). The PPh_{3} molecule coordinates the $\mathrm{Ru} u_{3}$ triangle equatorially; for molecule A of the asymmetric unit, the P atom lies $0.11 \AA$ above the $R u_{3}$ plane (i.e. in the direction of the $N(1 A)$ atom) and in molecule B the P atom lies $0.03 \AA$ below the $R u_{3}$ plane. The asymmetry in the $\mathrm{Ru}-\mathrm{Ru}$ bonds found in the structures of $\mathbf{4}$ and $\mathbf{1 1}$ persists in $\mathbf{1 6}$ in which the longer $\mathrm{Ru}-\mathrm{Ru}$ bond involves the Ru atom coordinated by PPh_{3}. The $\mathrm{Ru}-\mathrm{P}$ distance of $2.318(3) \AA(2.327(3) \AA$ for molecule B) is equal within experimental error to that found for the closely related compound (19) in which the dppm ligand equatorially spans the non-bonded $\mathrm{Ru} \ldots \mathrm{Ru}$ vector such that the $\mathrm{Ru}_{3} \mathrm{P}_{2}$ atoms are almost coplanar [20]. The presence of the bulky PPh_{3} ligand is responsible for the deviation from linearity of the $\mathrm{Ru}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ bond $\left(167.1(9)^{\circ}\right)$ as is shown in Fig. 3. There are no major differences between chemically equivalent parameters defining the two molecules of 16 which comprise the asymmetric unit for this compound.

A common feature of the bis- μ_{3}-phenylimidotriruthenium structures reported above, as well as the earlier examples, is the unequal distances of the $\mathrm{Ru}-\mathrm{Ru}$ bonds in the Ru_{3} triangles. It has been suggested [9] that it is the relative disposition of the ligands which is responsible for the disparate $\mathrm{Ru}-\mathrm{Ru}$ distances. We now develop this point further. As can be seen from Table 2, in each of the molecules there exists a weak intermolecular interaction, of ca. $3.0 \AA$, between the terminal Ru atom and a carbonyl group bonded to the middle Ru atom. The geometry of this interaction is such that the 'semi-bridging' carbonyl is coplanar with the $R u_{3}$ triangle and, further, it is noted that the greatest deviation from linearity of the $\mathrm{Ru}-\mathrm{C}-\mathrm{O}$ groups in these structures (except for that mentioned for $\mathbf{1 5}$ above) is found for the carbonyl groups involved in these intermolecular interactions. It is proposed that the presence of these additional, albeit weak, Ru... CO contacts is a major contributing factor to the minor asymmetry observed in the $\mathrm{Ru}-\mathrm{Ru}$ bonds.

There is a systematic variation in the non-bonded $\mathrm{Ru} \ldots \mathrm{Ru}$ distances in these clusters which can be related to the substitution pattern of the coordination geometries. For the compounds 4,11 and 15 the non-bonded $\mathrm{Ru} \ldots$. Ru distances lie in the narrow range $3.284(1)-3.291(1) \AA$. An expansion of the $\mathrm{Ru} \ldots \mathrm{Ru}$ distance of ca. $0.3 \AA$ is found in 19 and of ca. $0.7 \AA$ in 16 . The opening of the $R u_{3}$ triangles is undoubtedly related to the presence of the sterically demanding phosphine substituents in equatorial positions in these structures.

The separation of the imido N atoms in the clusters lies in the range $2.41(1)-2.45(1) \AA$ and it has been suggested by others that some direct interaction between these atoms is likely [9].

Conclusion

The trinuclear complexes obtained from previously described reactions between $\mathrm{M}_{3}(\mathrm{CO})_{12}(\mathrm{M}=\mathrm{Fe}[18], \mathrm{M}=\mathrm{Ru}[19])$ and azoarenes have been shown to be bis- μ_{3}-arylimidotrimetal clusters, $\mathrm{M}_{3}\left(\mu_{3}-\mathrm{NAr}_{2}(\mathrm{CO})_{9}\right.$, by spectroscopic and X-ray structural comparisons with examples of known structure obtained from other nitrogen-containing precursors. Electron transfer-catalysed substitution reactions with $2 e$ donor ligands result in the formation of axially- (isocyanide) or equatorially-substituted products (tertiary phosphines and phosphites): the latter reactions are analogous to those of $\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{PPh}\right)_{2}(\mathrm{CO})_{3}[35]$, and are assumed to proceed in a similar manner via opening of the $\mathrm{Ru}_{2} \mathrm{~N}$ triangle.

Experimental

General conditions. All reactions were run under nitrogen except those involving CO or H_{2}; no special precautions were taken to exclude air during work-up, since most complexes proved to be stable in air as solids, and for short times in solution. Solvents were dried and distilled (dme and thf from sodium diphenylkety) before use. Pressure reactions were carried out in a small stainless steel laboratory autoclave (Carl Röth, Karlsruhe) of internal volume 100 ml . equipped with an internal glass liner.

Instruments. Perkin Elmer 683 double-beam spectrometer. NaCl optics (IR): Bruker WP80 spectrometer (${ }^{1} \mathrm{H}$ NMR at 80 MHz . ${ }^{13} \mathrm{C}$ NMR at 20.1 MHz): GEC-Kratos MS3074 mass spectrometer (mass spectra at 70 eV ionising energy. 8 kV accelerating potential).

FAB mass spectra were obtained on a VG ZAB 2 HF instrument equipped with a FAB source. Argon was used as the exciting gas, with source pressures typically 10^{-6} mbar; the FAB gun voltage was 7.5 kV , current 1 mA . The ion accelerating potential was 8 kV . The matrix was 3 -nitrobenzyl atcolol. The complexes were made up as ca. 0.5 M solutions in acetone or dichloromethane: a drop was added to a drop of matrix and the mixture was applied to the FAB probe tip. Spectra are recorded as m / z (calculated for ${ }^{102} \mathrm{Ru}$ or ${ }^{305} \mathrm{Ru}_{3}$), assignment, 5 relative intensity. Peaks marked \star are centres of multiplets consisting of overlapping ions related by loss of one or two H from the indicated ion.

Starting materials. $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ was obtained from Strem Chemicals, Danvers, Mass., and used after drying in vacuum; $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ was prepared by a literature method [28]. Azoarenes were either commercial products. or were prepared by condensation of the appropriate amine with PhNO or $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{NO}$.

Reaction between $\mathrm{Fe}_{3}(\mathrm{CO})_{i_{2}}$ and azobenzene
A mixture of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}(1.00 \mathrm{~g}, 1.99 \mathrm{mmol})$ and azohenzene $(1.00 \mathrm{~g} .5 .48 \mathrm{mmol})$ in benzene (90 ml) was heated at reflux point for 4.5 h . After cooling. solvent was removed in vacuum, and the residue chromatographed (Florisil). Light petroleum eluted a purple band (mixture of $\mathrm{Fe}_{3}\left(\mathrm{CO}_{12}, \mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{4}(3)\right.$ and azoben-
zene, see below) and diethyl ether/light petroleum ($1 / 3$) eluted an orange band (azobenzene, identified by comparison with an authentic sample). Preparative TLC of the purple band (silica, light petroleum eluant) gave four bands. Band 1 ($R_{f}=0.90$), green, trace, $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ (IR identification). Band $2\left(R_{f}=0.78\right)$, purple, $\mathrm{Fe}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(3)(30 \mathrm{mg}, 2.5 \%)$, recrystallised (n -hexane), m.p. $138^{\circ} \mathrm{C}$ (dec). Found: C, 41.74, H, 1.80; N, 4.63\%; $\mathrm{C}_{21} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Fe}_{3}$ calcd. C, 41.91; H, 1.67; N, 4.65%. IR (cyclohexane): ν (CO) $2059 \mathrm{vs}, 2037 \mathrm{vs}, 2017 \mathrm{vs}, 2011 \mathrm{~s}, 1986 \mathrm{~s}, 1972 \mathrm{~s} \mathrm{~cm}{ }^{-1}$ (lit. [18] 2050vs, 2028s, 2008s, 1987m, 1970 $\mathrm{w} \mathrm{cm}^{-1}$). ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 7.28-6.99$ ppm (m, Ph). ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 209.6-191.6(\mathrm{~m}, \mathrm{CO}) ; 128.4,125.5,123.1 \mathrm{ppm}$ (m, Ph). The identity of complex 3 was confirmed from its unit cell: monoclinic, space group $P 2_{1} / n, a 11.34, b 13.66, c 15.42 \AA, \beta 100.0^{\circ}, V 2352 \AA^{3}$ (lit. [8]: monoclinic, $P 2_{1} / n, a 11.282(2), b 13.658(1), c 15.379(4) \AA, \beta=99.81(2)^{\circ}, V 2335.1$ \AA^{3}). Band 3, $\left(R_{f}=0.60\right)$ orange, azobenzene (TLC identification). Band 4, $\left(R_{f}=\right.$ 0.42) red (trace), $\mathrm{Fe}_{2}\left(\mu_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHNC}_{6} \mathrm{H}_{5}\right)(\mathrm{CO})_{6}$ (6) (IR identification).

Reactions of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with azoarenes

(a) Azobenzene

(i) Under nitrogen. A mixture of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(500 \mathrm{mg}, 0.78 \mathrm{mmol})$ and azobenzene ($285 \mathrm{mg}, 1.56 \mathrm{mmol}$) was heated in refluxing n -octane (80 ml) until the reaction was judged to be complete (monitoring the disappearance of the $2061 \mathrm{~cm}^{-1}$ band of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ (ca. 4 h$)$). Solvent was removed under reduced pressure and the residue was chromatographed (Florisil). Light petroleum eluted an orange band, which was recrystallised (n-pentane) to give $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}$ (4) $(115 \mathrm{mg}, 20 \%$), m.p. $157^{\circ} \mathrm{C}$ (Found: C, 34.18; H, 1.43; N, $3.79 \%, M, 740 . \mathrm{C}_{21} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Ru}_{3}$ calcd.: C, 34.20 ; H, 1.37; N, 3.80\%; M, 739.) IR (cyclohexane): $\nu(\mathrm{CO}) 2098 \mathrm{w}, 2077 \mathrm{vs}, 2053 \mathrm{vs}$, 2027 vs , 2020vs, 2016vs, $1995 \mathrm{~s}, 1984 \mathrm{~m} \mathrm{~cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 6.7-7.3(\mathrm{~m}, \mathrm{Ph})$. ${ }^{13} \mathrm{C}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 123.2,124.2,128.4(\mathrm{Ph}), 191.7 \mathrm{ppm}(\mathrm{m}, \mathrm{CO})$. FAB mass spectrum: $739,\left[M^{+}\right], 31 ; 711,\left[M-\mathrm{CO}^{+}, 93 ; 683,[M-2 \mathrm{CO}]^{+}, 100 ; 655,[M-\right.$ $3 \mathrm{CO}]^{+}, 17 ; 641,\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]^{+}$or $\left[\mathrm{Ru}_{3} \mathrm{~N}_{2}(\mathrm{CO})_{11}\right]^{+}\left(\equiv M^{\prime}\right), 14 ; 627,[M-4 \mathrm{CO}]^{+}$, 59; 613, $\left.\left[M^{\prime}-\mathrm{CO}\right]^{+}, 10 ; 599,[M-5 \mathrm{CO}]^{+}, 21 ; 585,\left[M^{\prime}-2 \mathrm{CO}\right)\right]^{+}, 10 ; 571$, $[M-6 \mathrm{CO}]^{+}, 41 ; 557,\left[M^{\prime}-3 \mathrm{CO}\right]^{+}, 14 ; 543,[M-7 \mathrm{CO}]^{+}, 48 ; 529,\left[M^{\prime}-4 \mathrm{CO}\right]^{+}$, 21; 515, $[M-8 \mathrm{CO}]^{+}, 31 ; 501,\left[M^{\prime}-5 \mathrm{CO}\right]^{+}, 31 ; 487,[M-9 \mathrm{CO}]^{+}, 31$. The identity of complex 4 was confirmed from its unit cell: orthorhombic, space group $P n a 2_{1}, a$ 19.72, b 9.65, c $13.03 \AA, V 2478 \AA^{3}$ (lit. [9]: orthorhombic, Pna $2_{1}, a 19.730(2), b$ $9.67(1)$, c $\left.13.043(1) \AA, V 2487.7 \AA^{3}\right)$. Light petroleum $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 / 1)$ eluted an orange band, which was recrystallised (n -hexane) to give $\mathrm{Ru}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NC}_{6} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{2}$ (8) ($20 \mathrm{mg}, 3.8 \%$) m.p. $130^{\circ} \mathrm{C}$ (dec) (Found: C, 60.18; H, 3.64; N, 10.73; $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Ru}$ calcd.: $\mathrm{C}, 60.11 ; \mathrm{H}, 3.49 ; \mathrm{N}, 10.78 \%$.) IR (cyclohexane); $\nu(\mathrm{CO})$ 2036vs, 1986vs cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 8.7-6.5(\mathrm{~m}, \mathrm{Ph})$. The brown band eluted by dichloromethane was recrystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane) to give a brownish-black powder (unidentified, 490 mg), with $\nu(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ at $2034 \mathrm{~s}(\mathrm{br}), 1984 \mathrm{~s}(\mathrm{br}) \mathrm{cm}^{-1}$.
(ii) Under CO . A mixture of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}(500 \mathrm{mg}, 0.78 \mathrm{mmol})$ and azobenzene ($145 \mathrm{mg}, 0.79 \mathrm{mmol}$) was heated in refluxing n -octane (70 ml) for 7 h with CO gas (high purity) bubbling through. After cooling, solvent was removed under reduced pressure and the residue chromatographed (Florisil). After multiple chromatography [necessary to separate $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ and $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}$] pure $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ (50 $\mathrm{mg}, 10 \%$; IR identification) and $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(4)(130 \mathrm{mg}, 25 \%$; IR identi-

Table 2
Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for complexes $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NAr}\right)\left(\mu_{3}-\mathrm{NAr}^{\prime}\right)(\mathrm{CO})_{7}(\mathrm{~L})\left(\mathrm{L}^{\prime}\right)^{a}$

	$\begin{aligned} \mathrm{Ar} & =\mathrm{Ph} \\ \mathrm{Ar}^{\prime} & =\mathrm{Ph} \\ (\mathrm{~L})\left(\mathrm{L}^{\prime}\right) & =(\mathrm{CO})_{2} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Ph} \\ & \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}-3 \\ & (\mathrm{CO})_{2} \end{aligned}$	$\begin{aligned} & \mathrm{Ph} \\ & \mathrm{Ph} \\ & (\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{Ph} \\ & \mathrm{Ph} \\ & (\mathrm{CO})\left(\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right) \end{aligned}$	Ph Ph (dppm)	
			molecule a	molecule b		molecule a	molecule b
$\overline{\mathrm{Ru}}$ (1)-Ru(2)	2.710 (1)	$2.702(1)$	2.717 (1)	2.718(1)	2.708(1)	2.680 (1)	2.699(1)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	2.626(1)	2.615(1)	$2.596(1)$	2.619(1)	2.620(1)	$2.664(1)$	$2.663(1)$
$\mathrm{Ru}(1) \ldots \mathrm{Ru}(3)$	3.290 (1)	3.291(1)	3.370 (1)	3.354(1)	3.284 (1)	3.320 (1)	3.321(1)
$\mathrm{Ru}(1)-\mathrm{N}(1)$	2.110 (4)	$2.051(4)$	2.208 (8)	$2.044(9)$	2.064 (4)	$2.100(5)$	$2.101(6)$
$\mathrm{Ru}(1)-\mathrm{N}(2)$	$2.129(6)$	$2.057(4)$	2.097(6)	$2.036(7)$	2.067 (4)	2.058 (5)	2.077 (5)
$\mathrm{Ru}(2)-\mathrm{N}(1)$	$2.052(4)$	2.127 (4)	2.128(9)	$2.152(10)$	2.137 (4)	$2.117(6)$	2.130 (6)
$\mathrm{Ru}(2)-\mathrm{N}(2)$	$2.061(4)$	2.131 (4)	2.145 (7)	$2.135(8)$	2.119(4)	$2.166(5)$	2.120 (6)
$\mathrm{Ru}(3)-\mathrm{N}(1)$	2.080(4)	$2.098(4)$	2.041(8)	$2.110(8)$	2.074 (4)	2.081 (5)	2.084 (6)
$\mathrm{Ru}(3)-\mathrm{N}(2)$	2.079(4)	2.082(4)	2.071(7)	2.141(7)	2.073(4)	2.085(6)	2.071(6)
$\mathrm{Ru}(1)-\mathrm{L}^{2}$	1.876(6)	1.886(5)	2.318 (3)	2.327(3)	2.000 (6)	2.335 (2)	$2.304(2)$
$\mathrm{Ru}(1)-\mathrm{L}^{\prime}$	1.914(7)	1.917(7)	1.910(13)	1.978(17)	1.928 (8)	2.310 (2)	2.340 (2)
$\mathrm{Ru}(1) \ldots \mathrm{C}$	$2.983(7)$	2.975(5)	2.951(11)	3.049(12)	2.899(7)	2.967 (9)	2.936 (11)
$\mathrm{N}(1) \ldots \mathrm{N}(2)$	$2.405(11)$	$2.424(6)$	2.448 (10)	2.394(10)	2.421 (5)	2.423(5)	2.422(6)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$76.1(1)$	$76.5(1)$	78.7(1)	77.9(1)	76.1(1)	76.8(1)	$77.0(1)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{N}(2)$	69.1(2)	72.3(3)	69.2(3)	$71.8(3)$	$71.8(2)$	71.3(2)	70.9(2)
$\mathrm{N}(1)-\mathrm{Ru}(2)-\mathrm{N}(2)$	$71.5(2)$	69.4 (1)	69.9(3)	67.9(3)	69.3 (2)	68.9(2)	$69.5(2)$
$\mathrm{N}(1)-\mathrm{Ru}(3)-\mathrm{N}(2)$	70.6 (2)	70.9(2)	73.0(3)	68.6(3)	71.4(2)	71.1(2)	71.3(2)
$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{L}$	143.1(2)	141.0(2)	151.0(1)	153.0(1)	111.9(2)	139.1(1)	139.0(1)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{L}^{\prime}$	148.6(2)	150.7(2)	154.5(3)	152.2(4)	$147.4(2)$	141.6(1)	141.1(1)
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{L}$	101.8(2)	98.0(2)	106.8(2)	109.1(3)	$162.7(2)$	95.5(2)	94.2(2)
$\mathrm{N}(2)-\mathrm{Ru}(1)-\mathrm{L}$	101.8(2)	101.8(2)	108.9(2)	109.0(2)	95.3(2)	$99.2(2)$	102.7(2)
$\mathrm{N}(1)-\mathrm{Ru}(3)-\mathrm{L}^{\prime}$	103.4(2)	106.1(2)	106.1(4)	109.5(5)	103.7(3)	97.7(2)	96.1(2)
$\mathrm{N}(2)-\mathrm{Ru}(3)-\mathrm{L}^{\prime}$	105.2(3)	105.1(2)	110.5(4)	103.6(4)	$102.4(2)$	100.3(2)	100.8(2)
$\mathrm{Ru}(2)-\mathrm{C}(3)-\mathrm{O}(3)$	172.8(6)	171.5(6)	167.1(9)	171.8 (13)	174.6(6)	171.1(8)	$171.2(9)$

[^1]fication) were obtained. The complex $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)\left(\mu_{3}-\mathrm{CO}\right)(\mathrm{CO})_{4}$ (2) wats not detected.

(b) Other azoarenes

Reactions between several azoarenes and $\mathrm{Ru} \mathbf{u}_{3}(\mathrm{CO})_{12}$ were carried out under the conditions summarised in Table 1. The following complexes were identified: (i) $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPb}^{2}\right)\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-3\right)(\mathrm{CO})_{9}$ (9), m.p. $144^{\circ} \mathrm{C}$. (Found: C. 35.19 : H. 1.66 . N. 3.75% : M. 753. $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Ru}_{3}$ calcd.: C. 35.16 ; H. 1.61. N. 3.736 : M. 753.) IR (cyclohexane): $v(\mathrm{CO}) 2098 \mathrm{w}, 2077 \mathrm{vs}, 2053 \mathrm{vs}, 2027 \mathrm{~s} .2020 \mathrm{vs} .2016 \mathrm{vs}, 1995 \mathrm{~s}$. $1984 \mathrm{~m} \mathrm{~cm}{ }^{1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 2.27(\mathrm{~s}, 3 \mathrm{H} . \mathrm{Me}) .6 .6-7.25\left(\mathrm{~m} .9 \mathrm{H}, \mathrm{Ph}+\mathrm{C}_{4} \mathrm{H}_{4}\right)$
(ii) $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)\left(\mu_{3}-\mathrm{NC}_{4} \mathrm{H}_{4} \mathrm{CF}_{3}-3\right)\left(\mathrm{CO}_{9}\right.$ (10) , m.p. $89^{\circ} \mathrm{C}$. (Found: (. 32.92: H. 1.17: N. 3.46% : M. 807. $\mathrm{C}_{22} \mathrm{H}_{4} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Ru}_{3}$ calcd. C. 32.80 ; H. 1.13: N. 3.48% : M. 807.) IR (cyclohexane): $v(C O) 2099 \mathrm{w}, 2078 \mathrm{vs} .2054 \mathrm{vs} .2028 \mathrm{cs} .202 \mathrm{ws} .2018 \mathrm{~s}$. $1997 \mathrm{~s} .1986 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 6.75-7.35\left(\mathrm{~m} . \mathrm{Ph}+\mathrm{C}_{.} \mathrm{H}_{4}\right)$.
(iii) $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}^{2}\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}-3\right)(\mathrm{CO})_{9}\right.$ (11) m.p. $150^{\circ} \mathrm{C}$ (dec) (Found: C 33.29: H, 1.20: N, 3.70\%: M. $757 . \mathrm{C}_{21} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{9} \mathrm{Ru}_{3}$ calcd. C. 33.39: H. 1.20: N. 3.71\%: M. 757.) IR (cyclohexane): ν (CO) $2100 \mathrm{w}, 2080 \mathrm{vs}, 2056 \mathrm{vs}, 2028 \mathrm{ss} .2021 \mathrm{ss}$. $2018 \mathrm{vs}, 1997 \mathrm{~s}, 1987 \mathrm{~m} \mathrm{~cm}{ }^{2}{ }^{2} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}, 6.63-7.4 \mathrm{~m}, \mathrm{Ph}+\mathrm{C}, \mathrm{H}_{4}\right)$.
(iv) $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}-4\right)\left(\mathrm{CO}_{9}\right.$ (12), m.p. $92^{\circ} \mathrm{C}$. (Found: ©, $33.12: \mathrm{H}$. 1.28: N, 3.65\%; M. 757. $\mathrm{C}_{21} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{9} \mathrm{Ru}$; calcd.: $\mathrm{C}, 33.39 ; \mathrm{H}, 1.20 ; \mathrm{N} .3 .71 \%$: M. 757.) IR (cyclohexane): $\nu(\mathrm{CO}) 2100 \mathrm{w}, 2079 \mathrm{ss}, 2055 \mathrm{ss} .2028 \mathrm{vs} .202 \mathrm{vs} .2017 \mathrm{ss}$. $1996 \mathrm{~s} .1986 \mathrm{~m} \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 6.65-7.4\left(\mathrm{~m}, \mathrm{Ph}+\mathrm{C}_{6} \mathrm{H}_{4}\right)$.
(v) $\mathrm{Ru}_{3}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-3\right)_{2}(\mathrm{CO})_{9}$ (13). m.p. $160^{\circ} \mathrm{C}$ (dec). (Found: C. $35.97 ; \mathrm{H}$. 1.84; N. 3.64% : M. 767. $\mathrm{C}_{2} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Ru}$, calcd. C. 36.08 . H. $1.84: \mathrm{N} .3 .66 \%$ M. 767.) IR (cyclohexane): p (CO) 2098w. 2076w, 2052vs. 2024w. 2018vs. 2014vs. $1994 \mathrm{~s}, 1983 \mathrm{~m} \mathrm{~cm}{ }^{1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 2.26(\mathrm{~s} .6 \mathrm{H}, \mathrm{Me}) .6 .6 .7 .25(\mathrm{~m} .8 \mathrm{H}$. $\mathrm{C}_{6} \mathrm{H}_{4}$). From the reaction with 3 -azotoluene, the mononaclear cyclometallated complex $\mathrm{Ru}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{MeN}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-3\right)_{2}(\mathrm{CO})_{2}$ was also obtained (2.2.7.7\%) m.p. $163^{\circ} \mathrm{C}$ (dec). IR (cyclohexane): $\nu(\mathrm{CO}) 2033 \mathrm{vs}, 1983 \mathrm{vs} \mathrm{cm}$: $\mathrm{NMR}: \delta(\mathrm{CDCl}:)$ $8.1 \cdots 6(\mathrm{~m} .14 \mathrm{H}, \mathrm{Ph}), 2.5-21\left(\mathrm{~m} .12 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Reactions of $R u_{3}\left(\mu_{3}-N P h_{2}\left(\mathrm{COH}_{4}(4)\right.\right.$
(a) With 2,6-dimethylpheml isocyanide. A solution of $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{4}(50$ $\mathrm{mg}, 0.068 \mathrm{mmol}$) and 2,6-dimethylphenyl isocyanide ($9 \mathrm{mg}, 0.068 \mathrm{mmol}$) in tetrathy drofuran (10 ml) was treated with six drops of sodium diphenylkeryl solution (ca. $0.025 \mathrm{M} \mathrm{Na}^{+}\left[\mathrm{Ph}_{2} \mathrm{CO}\right]$ in tetrahydrofuran). After stirring for five minutes. monitoring by TLC showed unreacted $\mathbf{4}$ remained. Addition of more initiator (six drops). was followed by stirring for five minutes longer, and evaporation in vacuo. A. dichloromethane extract of the residue was chromatographed (preparatite TLC on silica gel, $1 / 9$ acetone/light petroleum eluant). The complex $\mathrm{Ru}\left(\mu_{3}-\mathrm{NPh}\right)=-$ $(\mathrm{CO})_{8}(\mathrm{CNxy})(\mathbf{1 5})(23 \mathrm{mg} .40 \%$) was isolated from the second and magor hand (of six) $\left(R_{f}=0.60\right)$ as a red-orange powder m.p. $125.128^{\circ} \mathrm{C}$ (dec) (from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$). (Found: $\mathrm{C} .40 .89 ; \mathrm{H}, 2.51: \mathrm{N} .4 .83 . \mathrm{C}_{29} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Ru}$ cated.: C. 41.43 : H, 2.28; N, 5.00%). IR (cyclohexane): $\nu(\mathrm{CN}) 2156 \mathrm{~m}(\mathrm{br}): r(\mathrm{CO}) 2086 \mathrm{~m}$, 2078s, 2061m, 2045vs, 2038s, 2018(sh). 2011vs. 1996 s .1984 s . 1975 m .1969 m cm ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 2.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ; 6.86-7.10\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{Ph}+\mathrm{C}_{6} H_{2} \mathrm{Me}\right) \cdot \mathrm{FAB}$ mass spectrum: 841, $[M], 12: 813,[M-\mathrm{CO}]^{\circ}, 67: 785,[M-20], 100: 757$.
$[\mathrm{M}-3 \mathrm{CO}]^{+}, 9 ; 745,7,9 ; 729,[M-4 \mathrm{CO}]^{+}, 31 ; 701,[M-5 \mathrm{CO}]^{+}, 16 ; 673$, $[M-6 \mathrm{CO}]^{+}, 47 ; 645,[M-7 \mathrm{CO}]^{+}, 34 ; 632, ?, 21 ; 616,[M-8 \mathrm{CO}-\mathrm{H}]^{+}, 37$.
(b) With $P P h_{3}$. As in (a) above, $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(50 \mathrm{mg}, 0.068 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(18 \mathrm{mg}, 0.069 \mathrm{mmol})$ afforded $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)(\mathbf{1 6})$ as an orange powder from dichloromethane/methanol ($34 \mathrm{mg}, 52 \%$), m.p. $135-138^{\circ} \mathrm{C}$ (dec). (Found: C, 46.36; H, 2.87; N, 2.75\%. $\mathrm{C}_{38} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{PRu}_{3}$ calcd.: $\mathrm{C}, 46.97 ; \mathrm{H}, 2.59$; $\mathrm{N}, 2.88 \%$). IR (cyclohexane): $\boldsymbol{\nu}$ (CO) $2075 \mathrm{~s}, 2045 \mathrm{vs}, 2026 \mathrm{vs}, 2009 \mathrm{vs}, 1991 \mathrm{~m}, 1981 \mathrm{vs}$, $1973 \mathrm{vs} \mathrm{cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 6.5-7.5(\mathrm{~m}, \mathrm{Ph})$. EI and FAB mass spectra (m / z, assignment, relative intensity values for FAB spectrum in brackets); 973, $[M]^{+}, 26(5) ; 945,[M-\mathrm{CO}]^{+}, 76(39) ; 917,[M-2 \mathrm{CO}]^{+}, 13(0) ; 889,[M-3 \mathrm{CO}]^{+}$, 21 (11); 861, [$M-4 \mathrm{CO}]^{+}, 100(100) ; 833,[M-5 \mathrm{CO}], 21$ (8); 821, ?, - (6); 805, $[M-6 \mathrm{CO}]^{+}, 82(38) ; 777,[M-7 \mathrm{CO}]^{+}, 47(25) ; 763, ?,-(22) ; 749,[M-8 \mathrm{CO}]^{+}$, 87 (88); 262, $\left[\mathrm{PPh}_{3}\right]^{+}, 2630$.
(c) With $\mathrm{P}(\mathrm{OMe})_{3}$. Similarly, $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(50 \mathrm{mg}, 0.068 \mathrm{mmol})$ and $\mathrm{P}(\mathrm{OMe})_{3}(1 \mathrm{ml}$ of a 0.068 M solution in tetrahydrofuran, 0.068 mmol$)$, afforded $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(17)$, isolated by TLC chromatography (silica; $1 / 9$ acetone/light petroleum eluant) as the third of five bands eluted ($R_{f}=0.30$), as red crystals from light petroleum ($7 \mathrm{mg}, 12 \%$), m.p. $138-141^{\circ} \mathrm{C}$ (dec). (Found: $\mathrm{C}, 33.06$; $\mathrm{H}, 2.35$; $\mathrm{N}, 3.35 . \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{PRu}_{3}$ calcd.: $\mathrm{C}, 33.14 ; \mathrm{H}, 2.30$; N, 3.36%). IR (cyclohexane): 2078s, 2047vs, 2038m, 2032s, 2009vs, 1981s, $1973 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 3.49(\mathrm{~d}, J(\mathrm{HP}) 12.2 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Me}) ; 6.77-7.12$, (m, 10H, Ph). FAB mass spectrum: $835,[M]^{+}, 22 ; 807,[M-\mathrm{CO}]^{+}, 100 ; 779,[M-2 \mathrm{CO}]^{+}, 84 ; 751,[M-$ $3 \mathrm{CO}]^{+}, 16 ; 723,[M-4 \mathrm{CO}]^{+}, 44 ; 695,[M-5 \mathrm{CO}]^{+}, 25 ; 667,[M-6 \mathrm{CO}]^{+}, 25 ;$ $636^{\star},\left[M-6 \mathrm{CO}-\mathrm{OMe}^{+}, 22 ; 608,[M-7 \mathrm{CO}-\mathrm{OMe}]^{+}, 31: 578,[M-7 \mathrm{CO}-\right.$ $20 \mathrm{Me}]^{+}$, 22. Unreacted $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(11 \mathrm{mg}, 22 \%)$ was recovered by chromatography as the fastest moving band ($R_{f}=0.80$).
(d) With 1,2-bis(diphenylphosphino)acetylene (dppa). The binuclear complex $\left\{\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{8}\right\}_{2}(\mu$-dppa) (18) ($20 \mathrm{mg}, 31 \%$) was obtained similarly from $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(50 \mathrm{mg}, 0.068 \mathrm{mmol})$ and dppa ($14 \mathrm{mg}, 0.036 \mathrm{mmol}$). It was isolated by TLC (silica gel; 1/9 acetone/light petroleum eluant) in the fourth and major red-orange band of seven bands eluted ($R_{f}=0.25$), which was rechromatographed as above and afforded three bands; the fastest moving and major component was identified as the product above after crystallisation from dichloromethane/methanol, m.p. $135-137^{\circ} \mathrm{C}$ (dec) (Found: C, 43.49; H, 2.27; N, 3.06\%. $\mathrm{C}_{66} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{P}_{2} \mathrm{Ru}_{6}$ calcd.: C, $43.71 ; \mathrm{H}, 3.09 ; \mathrm{N}, 2.22 \%$). IR (cyclohexane): $\nu(\mathrm{CO})$ $2077 \mathrm{~s}, 2059 \mathrm{w}, 2047 \mathrm{vs}, 2032 \mathrm{~s}$, 2012vs, 1995w, 1979s (br) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right)$ $6.34-7.65(\mathrm{~m}, \mathrm{Ph})$. FAB mass spectrum: $1816,[M]^{+}, 8 ; 1732,[M-3 \mathrm{CO}]^{+}, 10$; $1648,[M-6 \mathrm{CO}]^{+}, 17 ; 1620[M-7 \mathrm{CO}]^{+}, 8 ; 1592,[M-8 \mathrm{CO}]^{+}, 12 ; 1564,[M-$ $9 \mathrm{CO}]^{+}, 15 ; 1536,[M-10 \mathrm{CO}]^{+}, 11 ; 1508,[M-11 \mathrm{CO}]^{+}, 10 ; 1480,[M-12 \mathrm{CO}]^{+}, 5 ;$ 1452, $[M-13 \mathrm{CO}]^{+}, 9 ; 1424,[M-14 \mathrm{CO}]^{+}, 11 ; 1396,[M-15 \mathrm{CO}]^{+}, 8 ; 1368$ $[M-16 \mathrm{CO}]^{+}, 8 ; 998,\left[M-16 \mathrm{CO}-2 \mathrm{PPh}_{2}\right]^{+}, 34 ; 937$, ?, $100 ; 881$, ?, 68.
(e) With bis(diphenylphosphino)methane (dppm). A similar reaction between $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}(50 \mathrm{mg}, 0.068 \mathrm{mmol})$ and $\mathrm{dppm}(26 \mathrm{mg}, 0.068 \mathrm{mmol})$ gave a product separated (preparative TLC, $1 / 9$ acetone/light petroleum) into unreacted dppm, recovered $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mathrm{CO})_{9}\left(24 \mathrm{mg}, 48 \% ; R_{f}=0.80\right)$ and a red-orange band ($R_{f}=0.20$) crystallised $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /ethanol/hexane) as a red powder, and identified as $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)_{2}(\mu-\mathrm{dppm})(\mathrm{CO})_{7}(19)(27 \mathrm{mg}, 37 \%)$, m.p. $190-193^{\circ} \mathrm{C}$ (dec). (Found: C, 49.55; H, 3.21; N, 2.56. $\mathrm{C}_{44} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{3}$ calcd. C, 49.58; H,
3.03: N, 2.63\%.) IR (cyclohexane): $\nu(\mathrm{CO}) 2057(\mathrm{sh}), 2053 \mathrm{vs}, 2022 \mathrm{vs}, 2003 \mathrm{~s} .1994 \mathrm{~s}$, $1970 \mathrm{~s}, 1950 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 2.33\left(\mathrm{t}, J(\mathrm{HP}) 11.4 \mathrm{~Hz}, 2 \mathrm{H}^{2} \mathrm{CH}_{2}\right)$; 6.4-7.4 (m, 30H, Ph). FAB mass spectrum: $1067,[\mathrm{M}]^{\circ}, 21: 1039[M-\mathrm{CO}]^{+}, 38$; 1011. $[M-2 \mathrm{CO}]^{*}, 67 ; 955,[M-4 \mathrm{CO}]^{*}, 50 ; 927,[M-5 \mathrm{CO}]^{+}, 13: 917, \ldots, 13: 899$, $[M-6 \mathrm{CO}]^{+}, 100 ; 871,[M-7 \mathrm{CO}]^{+}, 42 ; 822,[M-6 \mathrm{CO}-\mathrm{Ph}] .13 ; 794,[M-$ $7 \mathrm{CO}-\mathrm{Ph}]^{\dagger} .33 ; 780 .[\mathrm{M}-7 \mathrm{CO}-\mathrm{NPh}]^{\dagger}, 25$.
(f) With 1,2 -bis(diphenylphosphino)ethane (dppe). The reaction between $\mathrm{Ru}_{3}\left(\mu_{3}-\right.$ $\mathrm{NPh})_{2}(\mathrm{CO})_{9}(50 \mathrm{mg}, 0.068 \mathrm{mmol})$ and dppe $(28 \mathrm{mg} .0 .07 \mathrm{mmol})$ gave $\mathrm{Ru}_{3}\left(\mu_{3^{-}}\right.$ $\mathrm{NPh})_{2}\left(\mu\right.$-dppe) $(\mathrm{CO})_{7} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathbf{2 0})(5 \mathrm{mg} .7 \%)$ from the second of three bands (silica gel. $1 / 4$ acetone/light petroleum) as red crystals m.p. $188-190^{\circ}$ ((dec.) from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. (Found: $\mathrm{C}, 50.05 ; \mathrm{H}, 3.17$; N, 2.59. $\mathrm{C}_{45} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}_{2} \mathrm{Ru}_{6} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ calcd. C, $48.69 ;$ H. $3.14 ;$ N. 2.50%.) IR (cyclohexanes: $\mathrm{m}(\mathrm{CO}) 2056(\mathrm{sh}), 2052 \mathrm{vs}$. 2022vs. 2006s. 1991s. 1970s. $1950 \mathrm{~mm} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}, \mathrm{Cl}^{279}(\mathrm{~m} .4 \mathrm{H}\right.$. PCH_{2}) : $5.29\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; 7.59-7.63(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph})$. FAB mass spectrum: 1080 . $[M-\mathrm{H}]^{\prime}, 18 ; 1052,[\mathrm{M}-\mathrm{CO}-\mathrm{H}]^{+}, 16 ; 1024^{\star},[\mathrm{M}-2 \mathrm{CO}-\mathrm{H}], 4 ; 984^{\star}, ? 4$: $969[M-4 \mathrm{CO}]^{*}, 62 ; 941,[M-5 \mathrm{CO}]^{*}, ~ 6: 928^{*},[M-\mathrm{PPh}+\mathrm{H}], 18: 913^{*}$. $[M-6 \mathrm{CO}]^{4}, 100: 885,[M-7 \mathrm{CO}]^{4} \cdot 10$.

Coystallography

Intensity data for 11, 15 and 16 were measured at room-temperature on an Enraf-Nonius CAD4F diffractometer with the use of the $\omega: 2 \theta$ scan technique and

Table 3
Crystal data for complexes 11. 15 and 16

Compound	11	15	16
Formula	$\mathrm{C}_{2} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{9} \mathrm{Ru}_{3}$	$\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Ru}_{3}$	
Formula wt	755.5	840.7	1031.5
Crystal system	monoclinic	monoclinic	monoclinis
Space group	$\begin{aligned} & P 2_{1} n \\ & \text { variant }\left(C_{2 t}^{5} \cdot N o 14\right) \end{aligned}$	$\begin{aligned} & P 2_{1} n \\ & \text { variant }\left(C_{2 h}^{5}, \text { No } 14\right) \end{aligned}$	$\begin{aligned} & P_{\mathrm{C}} \\ & \left(\mathrm{C}^{2} \cdot \mathrm{No}\right) \end{aligned}$
a, A	$11.490(2)$	$11.9332)$	$17.90)(3)$
b. A	14.020(2)	18.952(2)	11.65723
c. A	15.735(2)	14.370(4)	19.5184
β, deg	99.43 (1)	$10029(2)$	$100.41(2)$
V, A^{3}	2501.8	3197.6	3917.7
$D_{\mathrm{mm}} \cdot \mathrm{gcm}^{-3}$	2.02	1.76	1.70
7	4	4	4
$D_{\mathrm{x}}, \mathrm{g} \mathrm{cm}^{-3}$	2.006	1.746	1.749
$\mathrm{F}(000)$	1448	1640	2008
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right), \mathrm{cm}^{1}$	17.78	13.95	12.79
Transmission factors	0.3506-0.7035	$0.4818 \cdot 0.7677$	0.5492-0.8667
Reflections measured	4345	5654	7348
θ range, deg	$1 \leqslant \theta \leqslant 25$	$1 \leqslant \theta \leqslant 22.5$	$1 \leqslant 4 \leqslant 22.5$
Unique reflections	4008	4974	6582
Observed reflections with $I \geqslant 2.5 \sigma(I)$	3653	3903	2291.
R	0.037	0.041	0.039
g	0.005	0.006	0.007
R_{w}	0.048	0.046	0.047
$\rho_{\text {max }}, \mathrm{e} \mathrm{A}{ }^{\text {3 }}$	0.89	0.74	0.94

graphite-monochromatized Mo- K_{α} radiation, $\lambda 0.71073 \AA$. No decomposition of the crystals occurred during their respective data collections. Corrections were routinely applied for Lorentz and polarization effects and for absorption [36]. Crystal data for the three compounds are listed in Table 3.

The structures were solved by direct-methods [36] and refined by a full-matrix least-squares procedure for $\mathbf{1 1}$ and $\mathbf{1 6}$. For $\mathbf{1 5}$ two cluster molecules, as well as a CHCl_{3} molecule, comprise the asymmetric unit and hence the large number of refinable parameters required the use of blocked-matrix least-squares method. Anisotropic thermal parameters were introduced for all non-hydrogen atoms in $\mathbf{1 1 .}$ A difference map calculated at this stage revealed that the fluorine atom of the

Table 4
Fractional atomic coordinates ($\times 10^{5}$ for $\mathrm{Ru}, \times 10^{4}$ for other atoms) for $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}\right)\left(\mu_{3}-\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}\right.$ 3)(CO$)_{9}(11)$

Atom	x	y	z
$\mathrm{Ru}(1)$	85297(3)	16558(3)	8082(2)
$\mathrm{Ru}(2)$	92875(3)	34824(3)	9436(2)
$\mathrm{Ru}(3)$	97822(3)	28406(3)	25218(2)
$F(1)$	5134(9)	2256(10)	3339(7)
$F\left(l^{\prime}\right)$	13689(10)	472(10)	2295(7)
$\mathrm{N}(1)$	10126(3)	2183(2)	1392(3)
N (2)	8207(3)	2689(3)	1668(2)
C(1)	6909(5)	1480(4)	262(3)
$\mathrm{O}(1)$	5951(3)	1358(4)	-27(3)
C(2)	9064(4)	999(4)	-144(3)
$\mathrm{O}(2)$	$9336(4)$	628(3)	-721(3)
C(3)	8519(4)	536(4)	1471(4)
O(3)	8578(5)	-108(4)	1917(3)
C(4)	8585(8)	3407(4)	-252(5)
$\mathrm{O}(4)$	8218(8)	3477(4)	-957(3)
C(5)	10756(6)	4048(4)	802(5)
O(5)	11655(6)	4328(4)	778(5)
C(6)	8653(8)	4686(4)	1153(4)
$\mathrm{O}(6)$	8153(7)	5373(4)	1301(5)
C(7)	9768(6)	1838(5)	3349(4)
$\mathrm{O}(7)$	$9748(6)$	1276(5)	3869 (3)
C(8)	9269(4)	3834(4)	3202(3)
$\mathrm{O}(8)$	8975(4)	4442(3)	3594(3)
C(9)	11374(5)	3207(4)	2934(3)
$\mathrm{O}(9)$	12309(4)	3431(3)	3166(3)
$\mathrm{C}(10)$	11237(4)	1818(3)	1248(3)
$\mathrm{C}(11)$	11569(5)	1903(5)	459(4)
$\mathrm{C}(12)$	12648(6)	1542(5)	311(5)
C(13)	13388(7)	1032(5)	953(6)
C(14)	12979(5)	898(5)	1719(5)
C(15)	11933(5)	1280(4)	1890(4)
$\mathrm{C}(16)$	7050(5)	2876(4)	1799(4)
$\mathrm{C}(17)$	6672(5)	2529(5)	2535(4)
$\mathrm{C}(18)$	5503(7)	2665(6)	2639(6)
C(19)	4717(6)	3151(7)	2050(7)
C(20)	5121(6)	3549(6)	1360(7)
$\mathrm{C}(21)$	6258(6)	3393(5)	1200(4)

meta-group substituted phenylimido group was disordered. The nature of the disorder was such that the fluorine atom was partly located on both carbon atoms $C(14)$ and C(18). The occupancy factors of the fluorine atoms $F(1)$ and $F(1$), i.e. x and $1-x$, were refined and at the convergence of the refmement $x=0.67(1)$ Hydrogen atom positions were determined from a difference map hut were not

Table 5
 ($\left.\mathrm{CNC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)(15)$

Atony	\because	1	\therefore
Ru(1)	4172003	$4172092)$	$31421{ }^{2}$
Ru(2)	22299(4)	$3412012)$	20865 3
$\mathrm{Ru}(3)$	$17382(4)$	$46199(3)$	18228(3)
N(1)	252303	$4462(2)$	9264
N(2)	$3170(4)$	$3999(2)$	18343
N(3)	$6257(4)$	334693	2646 i
((1)	4820×5	$4155(3)$	44804
O(1)	$5179(5)$	$4128(3)$	52473
(2)	484495	30214	29254
O(2)	$5208(6)$	355093	275214
C(3)	3250661	$2802(4)$	34983
O(3)	38045	23976	39568
C(4)	8888103	$378(4)$	3240 (\%)
O(4)	95(5)	3242134	35514
(15)	1729(6)	2717151	17220
O)(5)	1443(6)	$2323(4)$	11546
((6)	$332(6)$	4946(4)	31280
() (6)	- $504(4)$	514094	38134
(17)	10176	$4368(5)$	$57 \times$
(17)	$5716)$	41804	- 1564)
(i8)	2263(6)	554014	15276
O(8)	260067	6060) 3	
(19)	$2053(4)$	55072	42931
(10)	$1778(4)$	$5840(2)$	$4 \times 2 \mathrm{~s} 3$
C(1)	1684(4)	$5445(2)$	5636
C(12)	1864 (4)	47180	C0: $0^{\text {a }}$
(13)	$2139(4)$	$4385(2)$	48.2783
(14)	$2233(4)$	4780(2)	41353
C(15)	$4058(3)$	310042)	4774
C(16)	4591(3)	$2912(2)$	25921
C(17)	$4716(2)$	$341042)$	-405
C18)	$4308(3)$	$4094(2)$	4029
(19)	$3774(3)$	4282021	$3692)$
C(20)	3649 (3)	3785(2)	$1090{ }^{2}$
C(21)	$5526(5)$	3647 (3)	2859, ${ }^{5}$
C(22)	7597(5)	$3,07(4)$	15959
C123)	8387(7)	$2915(6)$	12106
(124)	$8612(7)$	221069	1509 71
C125)	$8082(7)$	$1907(5)$	276 ¢
(126)	$7292(6)$	$2272(4)$	د5ma
(127)	$7088(4)$	$2981(3)$	12694
C(28)	$7306(8)$	404205	1.3156
(29)	$6727(8)$	$1456(6)$	33068

Table 6
Fractional atomic coordinates ($\times 10^{5}$ for $\mathrm{Ru}, \times 10^{4}$ for other atoms) for $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{NPh}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)\right.$ (16)

Atom	x	y	z	Atom	x	y	z
$\mathrm{Ru}(1 \mathrm{~A})$	30625(-)	72279(6)	56891(-)	$\mathrm{Ru}(3 \mathrm{~B})$	83148(5)	84926(7)	4808(5)
$\mathrm{Ru}(2 \mathrm{~A})$	30152(5)	77167(7)	43209(5)	$\mathrm{P}(1 \mathrm{~B})$	7479(2)	$7183(2)$	- 1693(2)
$\mathrm{Ru}(3 \mathrm{~A})$	16759(5)	84866(6)	45056(5)	$\mathrm{N}(1 \mathrm{~B})$	7227(5)	8726(8)	-173(6)
$\mathrm{P}(1 \mathrm{~A})$	2479(2)	7157(2)	6664(2)	$\mathrm{N}(2 \mathrm{~B})$	7783(4)	6884(6)	149(4)
$\mathrm{N}(1 \mathrm{~A})$	2139(5)	6909(7)	4778(5)	C(1B)	6044(7)	7776 (10)	-1268(7)
$\mathrm{N}(2 \mathrm{~A})$	2738(4)	8757(5)	5149(4)	$\mathrm{O}(1 \mathrm{~B})$	5462(5)	$8050(8)$	-1663(5)
$\mathrm{C}(1 \mathrm{~A})$	3475(5)	5770(7)	5834(5)	C(2B)	6628(8)	5650(12)	-875(7)
$\mathrm{O}(1 \mathrm{~A})$	3793(5)	4876(7)	5958(5)	$\mathrm{O}(2 \mathrm{~B})$	6331(6)	4792(7)	-904(6)
C(2A)	3953(7)	7805(7)	6276(6)	$C(3 B)$	6008(7)	6887(13)	475(7)
$\mathrm{O}(2 \mathrm{~A})$	4471(5)	8209(7)	6610(6)	$\mathrm{O}(3 \mathrm{~B})$	5413(6)	6523(9)	323(5)
$\mathrm{C}(3 \mathrm{~A})$	3974(7)	6923(7)	4569(5)	$\mathrm{C}(4 \mathrm{~B})$	7274(6)	6916(10)	1554(6)
O(3A)	4534(4)	$6338(6)$	4597(5)	O(4B)	7436(5)	6539(9)	2075(5)
$\mathrm{C}(4 \mathrm{~A})$	3394(8)	8949(12)	3905(7)	C(5B)	6542(7)	8961(10)	1156(8)
$\mathrm{O}(4 \mathrm{~A})$	3647(7)	9724(7)	3555(6)	$\mathrm{O}(5 \mathrm{~B})$	6328(7)	9716(9)	1347(5)
C(5A)	2741(8)	7000(11)	3475(9)	C(6B)	8374(7)	9962(10)	936(6)
$\mathrm{O}(5 \mathrm{~A})$	2516(7)	6482(9)	2941(6)	$\mathrm{O}(6 \mathrm{~B})$	8384(6)	10880(8)	1201(6)
$\mathrm{C}(6 \mathrm{~A})$	848(7)	8684(10)	5012(6)	$\mathrm{C}(7 \mathrm{~B})$	9001(6)	7942(8)	1310(6)
$\mathrm{O}(6 \mathrm{~A})$	317(6)	8767(10)	5226 (6)	$\mathrm{O}(7 \mathrm{~B})$	9348(6)	7652(8)	1835(6)
C(7A)	1001(8)	8029(11)	3715(8)	$\mathrm{C}(8 \mathrm{~B})$	9151(8)	8640(10)	-74(9)
O(7A)	565(5)	7737(7)	3225(4)	$\mathrm{O}(8 \mathrm{~B})$	9734(6)	8700(10)	- 293 (6)
$\mathrm{C}(8 \mathrm{~A})$	1563(7)	10046(10)	4141(7)	$\mathrm{C}(9 \mathrm{~B})$	6932(4)	9846(6)	- 363(5)
$\mathrm{O}(8 \mathrm{~A})$	1458(7)	10828(7)	3853(6)	C (10B)	6145(4)	10040(6)	-369(5)
$\mathrm{C}(9 \mathrm{~A})$	1804(3)	5808(5)	4611(4)	C(11B)	5831(4)	11131(6)	- 520(5)
C(10A)	2249(3)	4854(5)	4502(4)	C(12B)	6306(4)	12028(6)	-665(5)
$\mathrm{C}(11 \mathrm{~A})$	1890(3)	3798(5)	4332(4)	C(13B)	7093(4)	11833(6)	-659(5)
$\mathrm{C}(12 \mathrm{~A})$	1086(3)	3696(5)	4269(4)	C(14B)	$7406(4)$	10742(6)	-508(5)
C(13A)	642(3)	4650(5)	4378(4)	C(15B)	8143(3)	5800(5)	392(4)
C(14A)	1001(3)	5706(5)	4548(4)	C(16B)	7689(3)	4896(5)	561(4)
C(15A)	3138(3)	9844(4)	5322(4)	C (17B)	8024(3)	3824(5)	732(4)
C(16A)	3936(3)	9973(4)	5355(4)	C(18B)	8814(3)	3657(5)	734(4)
C(17A)	4283(3)	11042(4)	5508(4)	C(19B)	9268(3)	4560(5)	565(4)
C(18A)	3833(3)	11982(4)	5628(4)	C(20B)	8933(3)	5632(5)	394(4)
C(19A)	3035(3)	11853(4)	5596(4)	C(21B)	8102(5)	8406(6)	-1786(6)
C(20A)	2688(3)	10783(4)	5443(4)	C(22B)	8897(5)	8393(6)	- 1792(6)
C(21A)	1811(5)	$6118(6)$	6769(4)	C(23B)	9280(5)	9408(6)	- 1901(6)
C(22A)	1459(5)	6133(6)	7355(4)	C(24B)	8868(5)	10436(6)	-2004(6)
C(23A)	966(5)	5240(6)	7470(4)	C(25B)	8072(5)	10449(6)	- 1999(6)
$\mathrm{C}(24 \mathrm{~A})$	826(5)	4332(6)	6998(4)	C(26B)	7689(5)	9434(6)	- 1890(6)
C(25A)	1178(5)	4317(6)	6412(4)	C(27B)	6874(5)	6972(5)	-2517(4)
C(26A)	1671(5)	5210(6)	6297(4)	C(28B)	6858(5)	7752(5)	-3061(4)
C(27A)	3225(5)	6927(6)	7505(4)	C(29B)	6376(5)	7555(5)	-3701(4)
C(28A)	3686(5)	5945(6)	7546(4)	C(30B)	5909(5)	6577(5)	-3797(4)
C(29A)	4146(3)	5633(6)	8179(4)	C(31B)	5925(5)	5796(5)	- 3253(4)
C(30A)	4145(5)	6304(6)	8771(4)	C(32B)	6407(5)	5994(5)	- 2613(4)
C(31A)	3684(5)	7287(6)	8729(4)	C(33B)	8169(4)	5954(6)	- 1748(3)
C(32A)	3224(5)	7598(6)	8097(4)	C(34B)	8278(4)	5086(6)	-1248(3)
C(33A)	2089(4)	8597(5)	6813(5)	C(35B)	8728(4)	4129(6)	-1338(3)
C(34A)	1292(4)	8721(5)	6789(5)	C(36B)	9070(4)	4041(6)	- 1928(3)
C(35A)	982(4)	9798(5)	6888(5)	C(37B)	8962(4)	4908(6)	- 2428(3)
C(36A)	1470(4)	10751(5)	7012(5)	C(38B)	8511(4)	5865(6)	-2338(3)
C(37A)	2266(4)	10627(5)	7036(5)	C(39)	5123(11)	8131(8)	2668(15)
C(38A)	2576(4)	9550(5)	6936(5)	$\mathrm{Cl}(1)$	4321(10)	7286(14)	2606(13)
$\mathrm{Ru}(1 \mathrm{~B})$	69370(5)	72175(7)	-6891(5)	$\mathrm{Cl}(2)$	4973(9)	9417(5)	2450(8)
$\mathrm{Ru}(2 \mathrm{~B})$	69678(5)	77114(7)	6765(5)	$\mathrm{Cl}(3)$	5825(6)	7353(7)	2452(5)

refined. In the refinement of $\mathbf{1 5}$, the phenyl groups of the imido ligands were constrained as hexagonal rigid groups, remaining non-hydrogen atoms were refined with anisotropic thermal parameters and hydrogen-atoms were included in the model at their calculated positions. Final refinement details for the three compounds are given in Table?

The crystal structure of $\mathbf{1 6}$ was originally solved and refined in the centrosymmetric space group $P 2 / C$, in which the (disordered) solvent molecule is required to be on a crystallographic two-fold axis. In order to satisfy stoichiometric and symmetry requirements of the $\mathrm{CHCl}_{\text {; }}$ molecules the lower symmetry space group $P \mathrm{P}$ was chosen, which enabled refinement to proceed smoothly. The low residual ($R=0.039$) suggests this choice of the space group to he satisfactory. The phenyl groups bonded to the P atoms were refined as hexagonal rigid groups and remaining non-hydrogen atoms were refined anisotropically. Hydrogen atoms were not included in the model due to the already large number of parameters included in the calculation. The absolute configuration of 16 was not determined as there were no significant differences in Friedel pairs included in the data set.

The scattering factors for neutral Ru were those from the International Tables [37] and were corrected for $f^{\prime \prime}$ and $f^{\prime \prime}$. Values for the remaining atoms were those incorporated in SHELX76 [36].

Fractional atomic coordinates for 11, 15 and $\mathbf{1 6}$ are listed in Tahles 46 , selected bond distances and angles for these, and related compounds. are given in Table 2. the numbering schemes used are shown in Figs. 1-3. Listings of thermal parameters. interatomic bond distances and angles, hydrogen atom parameters and structure factors for compounds $\mathbf{1 1} .15$ and $\mathbf{1 6}$ are available on request from the authors.

Acknowledgements

We thank Mr M.J. Liddell for obtaining the mass spectra. Financial support from the Australian Research Grants Scheme (to MIB and MRS) is gratefully acknowledged, as is receipt of a Commonwealth Post-Graduate Research Scholarship (by MGH) and a Scholarship from the University Sains Malaysid by ObS).

References

[^2]13 M.J. McGlinchey and F.G.A. Stone, J. Chem. Soc., Chem. Commun., (1970) 1265.
14 J.A. Smieja and W.L. Gladfelter, Inorg. Chem., 25 (1986) 2667.
15 J.A. Smieja, J.E. Gozum and W.L. Gladfelter, Organometallics. 5 (1986) 2154.
16 M.M. Bagga, P.L. Pauson, F.J. Preston and R.I. Reed, Chem. Commun., (1965) 543; M.M. Bagga, W.T. Flannigan, G.R. Knox, P.I. Pauson, F.I. Preston and R.I. Reed. J. Chem. Soc. C. (1968) 36.

17 P.E. Baikie and O.S. Mills, Chem. Commun.. (1966), 707; Inorg. Chim. Acta, 1 (1967) 55.
18 M.M. Bagga, W.T. Flannigan, G.R. Knox and P.L. Pauson, J. Chem. Soc. C, (1969) 1534.
19 M.I. Bruce, M.Z. Iqbal and F.G.A. Stone, J. Organomet Chem., 31 (1971) 275.
20 M.I. Bruce, M.G. Humphrey, O. bin Shawkataly, M.R. Snow and E.R.T. Tiekink, J. Organomet. Chem., 315 (1986) C51.
21 M.I. Bruce, M.R. Snow and E.R.T. Tiekink, Acta Crystallogr., C, 43 (1987) 2.43.
22 Z. Dawoodi, M.J. Mays and P.R. Raithby, Acta Crystallogr., B, 37 (1981) 252.
23 M.F. Garbauskas, J.S. Kasper and L.N. Lewis, J. Organomet. Chem., 276 (1984) 241.
24 M.I. Bruce, M.R. Snow and E.R.T. Tiekink, J. Organomet. Chem., 311 (1986) 217.
25 J.M. Patrick, A.H. White, M.I. Bruce, M.J. Beatson, D. St C. Black, G.B. Deacon and N.C. Thomas, J. Chem. Soc., Dalton Trans., (1983) 2121.

26 A.R.M. Craik, G.R. Knox, P.L. Pauson, R.J. Hoare and O.S. Mills, J. Chem. Soc., Chem. Commun., (1971) 168.

27 F.W.B. Einstein, S. Nussbaum, D. Sutton and A.C. Willis, Organometallics, 2 (1983) 1259.
28 M.I. Bruce, M.L. Williams, B.W. Skelton and A.H. White, J. Organomet. Chem., 309 (1986) 157.
29 M.I. Bruce, Coord. Chem. Rev., 76 (1987) 1.
30 M.I. Bruce, J.G. Matisons, R.C. Wallis, J.M. Patrick, B.W. Skelton and A.H. White, J. Chem. Soc., Dalton Tians., (1983) 2365.
31 A.W. Coleman, D.F. Jones, P.H. Dixneuf, C. Brisson, J.-J. Bonnet and G. Lavigne, Inorg. Chem., 23 (1984) 952.

32 G. Lavigne, N. Lugan and J.-J. Bonnet, Acta Crystallogr., B, 38 (1982) 1911.
33 M.I. Bruce, T.W. Hambley, B.K. Nicholson and M.R. Snow, J. Organomet. Chem., 235 (1982) 83; J. Gallucci, K.B. Gilbert, W.L. Hsu and S.G. Shore, Cryst. Struct. Commun., 11 (1982) 1385.
34 D.R. Tyler, R.A. Levenson and H.B. Gray, J. Am. Chem. Sw., 100 (1978) 7888, B.E.R. Schilling and R. Hoffmann, ibid., 101 (1979) 3456.

35 H.H. Ohst and J.K. Kochi, Inorg. Chem., 25 (1986) 2066; J. Am. Chem. Soc., 108 (1986) 2897; J.K. Kochi, J. Organomet. Chem., 300 (1986) 139.
36 Programmes used in the crystal structure determinations were: PREABS and PROCES, Data reduction programs for CAD4 diffractometer, University of Melbourne. (1981): SHELX, Program for crystal structure determination, G.M. Sheldrick, University of Cambridge, (1976); PLUTO, Plotting program for molecular structures, W.D.S. Motherwell, University of Cambridge (1978).
37 J.A. Ibers and W.C. Hamilton, (Eds.), International Tables for X-ray Crystallography, Kynoch Press, Birmingham, 1974, Vol. IV, p. 99, 149.
38 J.C. Daran, E. Cabrera, M.I. Bruce and M.L. Williams, J. Organomet. Chem., 319 (1987) 239.

[^0]: * For Part LII, see ref. 38.

[^1]: ${ }^{a}$ where $\mathrm{L}=\mathrm{L}^{\prime}=\mathrm{CO}$ for $\mathrm{Ru}_{3}(\mathrm{NPh})_{2}(\mathrm{CO})_{9}[9], \mathrm{Ru}_{3}\left(\mathrm{NPh}^{2}\right)\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{~F}-3\right)(\mathrm{CO})_{9} ; \quad \mathrm{L}=\mathrm{P}, \mathrm{L}^{\prime}=\mathrm{CO}$ for $\mathrm{Ru}_{3}(\mathrm{NPh})_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right), \quad \mathrm{L}=\mathrm{C}, \quad \mathrm{I}^{\prime}=\mathrm{CO}$ for $\mathrm{Ru}_{3}(\mathrm{NPh})_{2}(\mathrm{CO})_{8}(\mathrm{CN}-\mathrm{xy}) ; \mathrm{L}=\mathrm{L}^{\prime}=\mathrm{P}$ for $\mathrm{Ru}_{3}(\mathrm{NPh})_{2}(\mathrm{CO})_{8}(\mathrm{dppm})[20]$.

[^2]: 1 M. Dekker and G.R. Knox. Chem. Comm., (1967) 1243.
 2 R.J. Doedens, Inorg. Chem., 8 (1969) 570.
 3 S. Aime, L. Milone, R. Rosetti and P.L. Stanghellint, Gazz Chim. Ital. 105 (1975)617
 4 H. Alper and H-N. Paik, Nouv. I. Chim.. 2 (1978) 245
 5 J.M. Landesherg, L. Katz and C. Otsen. J. Org. Chem., 37 (1972) 930.
 6 E. Sappa and L. Milone, J. Organomet Chem., 61 (1973) 383
 7 S. Bhaduri. K.S. Gopalkrishman. G.M. Sheldrich, W. Clegg and D. Stalke. J. Chem. Soc. Dalton Trans., (1983) 2339.
 8 W. Clege. G.M. Sheldrick. D Stalke, S Bhaduriand HK. Khwata, Acta Cryathog. C. 40 (1984) 2045
 9 W. Clegg. G.M. Sheldrick. D. Stalke. S. Bhaduri and K.S. Gopakrishan. Ac:a Crytahlogr.. C. 40 (1984) 927.

 10 R. Rossetti and P.L. Stanghellini, J. Coord. Chem,. 3 (1974) 217.
 11 S. Aime, L. Milone, R. Rosetti and P.L. Stanghellini, J. Chem. Soc. Daton Trans., (1980) 46.
 12 G.D. Williams. G.L. Geoffroy, R.R. Whittle and A.L. Rheingold. B. Am. Chem Soc. 107 (1985) 729 ; S-H. Han. G.L. Geoffroy and A.I. Rheingold. Organonetallics. 5 1986is 3661.

